Anmelden
Tipp von eurobuch.com
Ähnliche Bücher
Weitere, andere Bücher, die diesem Buch sehr ähnlich sein könnten:
Buch verkaufen
Anbieter, die das Buch mit der ISBN 9783899371185 ankaufen:
Suchtools
Buchtipps
Aktuelles
- 0 Ergebnisse
Kleinster Preis: € 40,00, größter Preis: € 76,09, Mittelwert: € 57,21
...
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau – Beobachtung und Modell - Niklas Schormair
(*)
Niklas Schormair:
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau – Beobachtung und Modell - neues Buch

2010, ISBN: 9783899371185

ID: 762371675

Die am häufigsten verwendeten Vortriebsarten beim Tunnelbau in Festgesteinen stellen der Bohr- und Sprengvortrieb, der Vortrieb mit einer Teilschnittmaschine oder mit einer (Hartgesteins-) Tunnelbohrmaschine dar. Während die für eine Vortriebsprognose zu verwendenden Gesteins- und Gebirgsparameter in der »Makroskala« durch verschiedene Arbeiten bereits gut untersucht sind, ist der Prozess der Brucherzeugung und Bruchausbreitung in der »Mikroskala« unterhalb eines Werkzeugs bisher noch wenig erforscht. Insbesondere bei anisotropen Gesteinen wie kristallinen Schiefern und Gneisen ist eine Abhängigkeit der felsmechanischen Parameter und der Vortriebsleistungen von der Orientierung des Gefüges bekannt. In dieser Mikroskala könnten jedoch durch die Betrachtung des Löseprozesses bei der Bearbeitung mit verschiedenen Werkzeugen entscheidende Impulse zum Verständnis der Gesteinszerstörung - unter besonderer Berücksichtigung der Anisotropie - ausgelöst werden. In der vorliegenden Arbeit wurden zwei Ansätze zur Bearbeitung dieser Fragestellungen verfolgt: Zunächst wurden in einer Reihe von isotropen und anisotropen Gesteinen unter Baustellenbedingungen verschiedene Bohrversuche mit einer im Tunnelbau üblichen Bohrausrüstung durchgeführt, Proben aus der Bohrlochsohle entnommen und die Rissausbreitung im Gestein mit Hilfe von eingefärbten Dünnschliffen untersucht. Daraus wurden Modelle der mit der Gefügeorientierung verknüpften Rissmuster in Form von Schemazeichnungen entwickelt und ein konstitutionelles Modell der Rissausbreitung und des Bruchprozesses in anisotropen Gesteinen aufgestellt. Im nächsten Schritt wurde mit Hilfe des diskreten Elemente Programms Particle Flow Code (PFC2D, ITASCA) der Vorgang der mechanischen Gebirgslösung in verschiedenen anisotropen Gesteinen simuliert. Die Modellierung mit PFC2D stellt den Hauptteil der vorliegenden Arbeit dar. Im Zuge der Modellierung wurden fünf charakteristische »Mustergesteine« entwickelt (Sand-/Tonstein, Glimmerschiefer, Phyllit und zwei Gneise) und ihre Mikroparameter mit Hilfe eines virtuellen Biaxialversuchs im Hinblick auf ihre Makroparameter - einaxiale Druckfestigkeit und Scherfestigkeit - kalibriert. Anschließend wurde der Löseprozess an diesen »virtuellen« Gesteinen mit verschiedenen, realitätsnahen Werkzeugen simuliert. Dabei kamen verschiedene Hartmetallstifte von Bohrkronen, Schneidringe von Rollenmeißeln sowie eine Rundschaftmeißel-Spitze zum Einsatz. Um der Auswirkung des Werkzeugverschleißes Rechnung zu tragen, wurden bei der Simulation des Schneidens mit einem Disken- oder Rollenmeißel (TBM-Vortrieb) verschiedene Verschleißformen des Werkzeuges generiert und gestestet. Als Ergebnis konnte das charakteristische Rissmuster in Abhängigkeit von der Orientierung der Anisotropie in den verschiedenen Gesteinen dargestellt und verschiedenen Parametern gegenübergestellt werden. Zusammenfassend lassen sich dabei folgende Schlussfolgerungen ziehen: - Durch die Orientierung der Anisotropie wird das Rissmuster unterhalb eines Werkzeuges stark beeinflusst. Die Anzahl der Mikrorisse ist davon weitgehend unabhängig. - Die Rissausbreitung in den Gesteinen wird hauptsächlich durch den Abstand der Schieferungsflächen bestimmt. Die Schieferungsflächen wurden dabei als Schwächezonen (= Zonen verringerter Materialfestigkeit) modelliert. Der entscheidende Faktor hierbei ist der Volumenanteil an Schwächezonen und seine Verteilung im Gestein. - Der Abstand der Schwächezonen beeinflusst die Ausbildung der Rissmuster signifikant. - Die unterschiedlichen Werkzeuge ergeben ein für sie charakteristisches Rissmuster im Gestein. Mittels PFC2D war es nicht möglich, Makrorisse direkt zu erzeugen, an denen sich beispielsweise große Gesteinsbruchstücke ablösen können (sog. Bohrklein oder Chips). Diese sich durch Mikrorisse abzeichnenden Makrorisse müssen erst durch visuelle Verbindung der entsprechenden Mikrorisse manuell in das Rissbild eingetragen werden. - Die Anzahl der Mikrorisse werden von der Geometrie des Werkzeugs bzw. seiner Verschleißform signifikant beeinflusst. Dies wirkt sich im Allgemeinen negativ auf die Löseleistung aus. So konnte beispielsweise nachgewiesen werden, dass abgestumpfte Werkzeuge eine deutlich geringere Rissanzahl erzeugen. - Die Ergebnisse aus der numerischen Modellierung unterstützen die konzeptionellen Modelle der Löseprozesse beim Bohren, Fräsen bzw. Schneiden sowie die makroskopischen Beobachtungen in Die am häufigsten verwendeten Vortriebsarten beim Tunnelbau in Festgesteinen stellen der Bohr- und Sprengvortrieb, der Vortrieb mit einer Teilschnittmaschine oder mit einer (Hartgesteins-) Tunnelbohrmaschine dar. Während die für eine Vortriebsprognose zu verwendenden Gesteins- und Gebirgsparameter in der 'Makroskala' durch verschiedene Arbeiten bereits gut untersucht sind, ist der Prozess der Brucherzeugung und Bruchausbreitung in der 'Mikroskala' unterhalb eines Buch (dtsch.) Taschenbuch 10.09.2010 Bücher>Sachbücher>Naturwissenschaften & Technik>Erdkunde & Geologie>Geologie, Pfeil, .201

 Orellfuessli.ch
No. 24409986. Versandkosten:Zzgl. Versandkosten. (EUR 15.61)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau – Beobachtung und Modell - Niklas Schormair
(*)
Niklas Schormair:
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau – Beobachtung und Modell - neues Buch

2010, ISBN: 9783899371185

ID: 762371675

Die am häufigsten verwendeten Vortriebsarten beim Tunnelbau in Festgesteinen stellen der Bohr- und Sprengvortrieb, der Vortrieb mit einer Teilschnittmaschine oder mit einer (Hartgesteins-) Tunnelbohrmaschine dar. Während die für eine Vortriebsprognose zu verwendenden Gesteins- und Gebirgsparameter in der »Makroskala« durch verschiedene Arbeiten bereits gut untersucht sind, ist der Prozess der Brucherzeugung und Bruchausbreitung in der »Mikroskala« unterhalb eines Werkzeugs bisher noch wenig erforscht. Insbesondere bei anisotropen Gesteinen wie kristallinen Schiefern und Gneisen ist eine Abhängigkeit der felsmechanischen Parameter und der Vortriebsleistungen von der Orientierung des Gefüges bekannt. In dieser Mikroskala könnten jedoch durch die Betrachtung des Löseprozesses bei der Bearbeitung mit verschiedenen Werkzeugen entscheidende Impulse zum Verständnis der Gesteinszerstörung - unter besonderer Berücksichtigung der Anisotropie - ausgelöst werden. In der vorliegenden Arbeit wurden zwei Ansätze zur Bearbeitung dieser Fragestellungen verfolgt: Zunächst wurden in einer Reihe von isotropen und anisotropen Gesteinen unter Baustellenbedingungen verschiedene Bohrversuche mit einer im Tunnelbau üblichen Bohrausrüstung durchgeführt, Proben aus der Bohrlochsohle entnommen und die Rissausbreitung im Gestein mit Hilfe von eingefärbten Dünnschliffen untersucht. Daraus wurden Modelle der mit der Gefügeorientierung verknüpften Rissmuster in Form von Schemazeichnungen entwickelt und ein konstitutionelles Modell der Rissausbreitung und des Bruchprozesses in anisotropen Gesteinen aufgestellt. Im nächsten Schritt wurde mit Hilfe des diskreten Elemente Programms Particle Flow Code (PFC2D, ITASCA) der Vorgang der mechanischen Gebirgslösung in verschiedenen anisotropen Gesteinen simuliert. Die Modellierung mit PFC2D stellt den Hauptteil der vorliegenden Arbeit dar. Im Zuge der Modellierung wurden fünf charakteristische »Mustergesteine« entwickelt (Sand-/Tonstein, Glimmerschiefer, Phyllit und zwei Gneise) und ihre Mikroparameter mit Hilfe eines virtuellen Biaxialversuchs im Hinblick auf ihre Makroparameter - einaxiale Druckfestigkeit und Scherfestigkeit - kalibriert. Anschliessend wurde der Löseprozess an diesen »virtuellen« Gesteinen mit verschiedenen, realitätsnahen Werkzeugen simuliert. Dabei kamen verschiedene Hartmetallstifte von Bohrkronen, Schneidringe von Rollenmeisseln sowie eine Rundschaftmeissel-Spitze zum Einsatz. Um der Auswirkung des Werkzeugverschleisses Rechnung zu tragen, wurden bei der Simulation des Schneidens mit einem Disken- oder Rollenmeissel (TBM-Vortrieb) verschiedene Verschleissformen des Werkzeuges generiert und gestestet. Als Ergebnis konnte das charakteristische Rissmuster in Abhängigkeit von der Orientierung der Anisotropie in den verschiedenen Gesteinen dargestellt und verschiedenen Parametern gegenübergestellt werden. Zusammenfassend lassen sich dabei folgende Schlussfolgerungen ziehen: - Durch die Orientierung der Anisotropie wird das Rissmuster unterhalb eines Werkzeuges stark beeinflusst. Die Anzahl der Mikrorisse ist davon weitgehend unabhängig. - Die Rissausbreitung in den Gesteinen wird hauptsächlich durch den Abstand der Schieferungsflächen bestimmt. Die Schieferungsflächen wurden dabei als Schwächezonen (= Zonen verringerter Materialfestigkeit) modelliert. Der entscheidende Faktor hierbei ist der Volumenanteil an Schwächezonen und seine Verteilung im Gestein. - Der Abstand der Schwächezonen beeinflusst die Ausbildung der Rissmuster signifikant. - Die unterschiedlichen Werkzeuge ergeben ein für sie charakteristisches Rissmuster im Gestein. Mittels PFC2D war es nicht möglich, Makrorisse direkt zu erzeugen, an denen sich beispielsweise grosse Gesteinsbruchstücke ablösen können (sog. Bohrklein oder Chips). Diese sich durch Mikrorisse abzeichnenden Makrorisse müssen erst durch visuelle Verbindung der entsprechenden Mikrorisse manuell in das Rissbild eingetragen werden. - Die Anzahl der Mikrorisse werden von der Geometrie des Werkzeugs bzw. seiner Verschleissform signifikant beeinflusst. Dies wirkt sich im Allgemeinen negativ auf die Löseleistung aus. So konnte beispielsweise nachgewiesen werden, dass abgestumpfte Werkzeuge eine deutlich geringere Rissanzahl erzeugen. - Die Ergebnisse aus der numerischen Modellierung unterstützen die konzeptionellen Modelle der Löseprozesse beim Bohren, Fräsen bzw. Schneiden sowie die makroskopischen Die am häufigsten verwendeten Vortriebsarten beim Tunnelbau in Festgesteinen stellen der Bohr- und Sprengvortrieb, der Vortrieb mit einer Teilschnittmaschine oder mit einer (Hartgesteins-) Tunnelbohrmaschine dar. Während die für eine Vortriebsprognose zu verwendenden Gesteins- und Gebirgsparameter in der ´Makroskala´ durch verschiedene Arbeiten bereits gut untersucht sind, ist der Prozess der Brucherzeugung und Bruchausbreitung in der ´Mikroskala´ unterhalb eines Werkzeugs bisher noch wenig Buch (dtsch.) Taschenbuch 10.09.2010 Bücher>Sachbücher>Naturwissenschaften & Technik>Erdkunde & Geologie>Geologie, Pfeil, .201

 Orellfuessli.ch
No. 24409986. Versandkosten:Zzgl. Versandkosten. (EUR 15.73)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau – Beobachtung und Modell - Niklas Schormair
(*)
Niklas Schormair:
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau – Beobachtung und Modell - neues Buch

ISBN: 9783899371185

ID: 798539851

Die am häufigsten verwendeten Vortriebsarten beim Tunnelbau in Festgesteinen stellen der Bohr- und Sprengvortrieb, der Vortrieb mit einer Teilschnittmaschine oder mit einer (Hartgesteins-) Tunnelbohrmaschine dar. Während die für eine Vortriebsprognose zu verwendenden Gesteins- und Gebirgsparameter in der »Makroskala« durch verschiedene Arbeiten bereits gut untersucht sind, ist der Prozess der Brucherzeugung und Bruchausbreitung in der »Mikroskala« unterhalb eines Werkzeugs bisher noch wenig erforscht. Insbesondere bei anisotropen Gesteinen wie kristallinen Schiefern und Gneisen ist eine Abhängigkeit der felsmechanischen Parameter und der Vortriebsleistungen von der Orientierung des Gefüges bekannt. In dieser Mikroskala könnten jedoch durch die Betrachtung des Löseprozesses bei der Bearbeitung mit verschiedenen Werkzeugen entscheidende Impulse zum Verständnis der Gesteinszerstörung - unter besonderer Berücksichtigung der Anisotropie - ausgelöst werden. In der vorliegenden Arbeit wurden zwei Ansätze zur Bearbeitung dieser Fragestellungen verfolgt: Zunächst wurden in einer Reihe von isotropen und anisotropen Gesteinen unter Baustellenbedingungen verschiedene Bohrversuche mit einer im Tunnelbau üblichen Bohrausrüstung durchgeführt, Proben aus der Bohrlochsohle entnommen und die Rissausbreitung im Gestein mit Hilfe von eingefärbten Dünnschliffen untersucht. Daraus wurden Modelle der mit der Gefügeorientierung verknüpften Rissmuster in Form von Schemazeichnungen entwickelt und ein konstitutionelles Modell der Rissausbreitung und des Bruchprozesses in anisotropen Gesteinen aufgestellt. Im nächsten Schritt wurde mit Hilfe des diskreten Elemente Programms Particle Flow Code (PFC2D, ITASCA) der Vorgang der mechanischen Gebirgslösung in verschiedenen anisotropen Gesteinen simuliert. Die Modellierung mit PFC2D stellt den Hauptteil der vorliegenden Arbeit dar. Im Zuge der Modellierung wurden fünf charakteristische »Mustergesteine« entwickelt (Sand-/Tonstein, Glimmerschiefer, Phyllit und zwei Gneise) und ihre Mikroparameter mit Hilfe eines virtuellen Biaxialversuchs im Hinblick auf ihre Makroparameter - einaxiale Druckfestigkeit und Scherfestigkeit - kalibriert. Anschließend wurde der Löseprozess an diesen »virtuellen« Gesteinen mit verschiedenen, realitätsnahen Werkzeugen simuliert. Dabei kamen verschiedene Hartmetallstifte von Bohrkronen, Schneidringe von Rollenmeißeln sowie eine Rundschaftmeißel-Spitze zum Einsatz. Um der Auswirkung des Werkzeugverschleißes Rechnung zu tragen, wurden bei der Simulation des Schneidens mit einem Disken- oder Rollenmeißel (TBM-Vortrieb) verschiedene Verschleißformen des Werkzeuges generiert und gestestet. Als Ergebnis konnte das charakteristische Rissmuster in Abhängigkeit von der Orientierung der Anisotropie in den verschiedenen Gesteinen dargestellt und verschiedenen Parametern gegenübergestellt werden. Zusammenfassend lassen sich dabei folgende Schlussfolgerungen ziehen: - Durch die Orientierung der Anisotropie wird das Rissmuster unterhalb eines Werkzeuges stark beeinflusst. Die Anzahl der Mikrorisse ist davon weitgehend unabhängig. - Die Rissausbreitung in den Gesteinen wird hauptsächlich durch den Abstand der Schieferungsflächen bestimmt. Die Schieferungsflächen wurden dabei als Schwächezonen (= Zonen verringerter Materialfestigkeit) modelliert. Der entscheidende Faktor hierbei ist der Volumenanteil an Schwächezonen und seine Verteilung im Gestein. - Der Abstand der Schwächezonen beeinflusst die Ausbildung der Rissmuster signifikant. - Die unterschiedlichen Werkzeuge ergeben ein für sie charakteristisches Rissmuster im Gestein. Mittels PFC2D war es nicht möglich, Makrorisse direkt zu erzeugen, an denen sich beispielsweise große Gesteinsbruchstücke ablösen können (sog. Bohrklein oder Chips). Diese sich durch Mikrorisse abzeichnenden Makrorisse müssen erst durch visuelle Verbindung der entsprechenden Mikrorisse manuell in das Rissbild eingetragen werden. - Die Anzahl der Mikrorisse werden von der Geometrie des Werkzeugs bzw. seiner Verschleißform signifikant beeinflusst. Dies wirkt sich im Allgemeinen negativ auf die Löseleistung aus. So konnte beispielsweise nachgewiesen werden, dass abgestumpfte Werkzeuge eine deutlich geringere Rissanzahl erzeugen. - Die Ergebnisse aus der numerischen Modellierung unterstützen die konzeptionellen Modelle der Löseprozesse beim Bohren, Fräsen bzw. Schneiden sowie die makroskopischen Die am häufigsten verwendeten Vortriebsarten beim Tunnelbau in Festgesteinen stellen der Bohr- und Sprengvortrieb, der Vortrieb mit einer Teilschnittmaschine oder mit einer (Hartgesteins-) Tunnelbohrmaschine dar. Während die für eine Vortriebsprognose zu verwendenden Gesteins- und Gebirgsparameter in der ´Makroskala´ durch verschiedene Arbeiten bereits gut untersucht sind, ist der Prozess der Brucherzeugung und Bruchausbreitung in der ´Mikroskala´ unterhalb eines Werkzeugs bisher noch wenig Buch (dtsch.) Bücher>Sachbücher>Naturwissenschaften & Technik>Erdkunde & Geologie>Geologie, Pfeil

 Thalia.de
No. 24409986. Versandkosten:, Versandfertig innerhalb von 3 Wochen, DE. (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau - Beobachtung und Modell
(*)
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau - Beobachtung und Modell - neues Buch

ISBN: 3899371186

Copertina flessibile, [EAN: 9783899371185], Libro, 411664031, Categorie, 13077484031, Adolescenti e ragazzi, 508758031, Arte, cinema e fotografia, 508714031, Biografie, diari e memorie, 508791031, Calendari e agende, 508785031, Diritto, 508864031, Dizionari e opere di consultazione, 508786031, Economia, affari e finanza, 13466594031, Erotica, 508792031, Famiglia, salute e benessere, 1345828031, Fantascienza e Fantasy, 508784031, Fumetti e manga, 508771031, Gialli e Thriller, 1346712031, Guide di revisione e aiuto allo studio, 508820031, Humour, 508733031, Informatica, Web e Digital Media, 508770031, Letteratura e narrativa, 508715031, Libri per bambini, 508888031, Libri scolastici, 15216198031, Libri universitari, 508857031, Lingua, linguistica e scrittura, 508811031, Politica, 508745031, Religione, 508775031, Romanzi rosa, 508867031, Scienze, tecnologia e medicina, 508794031, Self-help, 508879031, Società e scienze sociali, 508835031, Sport, 508796031, Storia, 508821031, Tempo libero, 508753031, Viaggi, 411663031, Libri

 amazon.it
Ilys Webstore (Consegna veloce in tutto il mondo)
Neuware. Versandkosten:Amazon-Produkte ab EUR 19 Versandkostenfrei in Italien und der Schweiz, EUR 6 für den Rest der EU.. Generalmente spedito in 1-2 giorni lavorativi. Die angegebenen Versandkosten können von den tatsächlichen Kosten abweichen. (EUR 5.50)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau - Beobachtung und Modell
(*)
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau - Beobachtung und Modell - Taschenbuch

ISBN: 3899371186

Paperback, [EAN: 9783899371185], Book, 1025612, Subjects, 349777011, Antiquarian, Rare & Collectable, 91, Arts & Photography, 67, Biography, 68, Business, Finance & Law, 507848, Calendars, Diaries & Annuals, 69, Children's Books, 274081, Comics & Graphic Novels, 71, Computing & Internet, 72, Crime, Thrillers & Mystery, 496792, Education Studies & Teaching, 9587997031, Erotica, 62, Fiction, 66, Food & Drink, 275835, Gay & Lesbian, 74, Health, Family & Lifestyle, 65, History, 64, Home & Garden, 63, Horror, 89, Humour, 275738, Languages, 61, Mind, Body & Spirit, 73, Music, Stage & Screen, 275389, Poetry, Drama & Criticism, 59, Reference, 58, Religion & Spirituality, 88, Romance, 5106747031, School Books, 57, Science & Nature, 4034595031, Science Fiction & Fantasy, 564334, Scientific, Technical & Medical, 60, Society, Politics & Philosophy, 55, Sports, Hobbies & Games, 14909553031, Textbooks, 83, Travel & Holiday, 52, Young Adult, 266239, Books

 amazon.co.uk
Ilys Webstore (Fast Delivery Worldwide)
Neuware. Versandkosten:Europa Zone 1: GBP 5,48 pro Produkt.. Usually dispatched within 1-2 business days. Die angegebenen Versandkosten können von den tatsächlichen Kosten abweichen. (EUR 4.80)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.

Details zum Buch
Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau - Beobachtung und Modell

Die am häufigsten verwendeten Vortriebsarten beim Tunnelbau in Festgesteinen stellen der Bohr- und Sprengvortrieb, der Vortrieb mit einer Teilschnittmaschine oder mit einer (Hartgesteins-) Tunnelbohrmaschine dar. Während die für eine Vortriebsprognose zu verwendenden Gesteins- und Gebirgsparameter in der »Makroskala« durch verschiedene Arbeiten bereits gut untersucht sind, ist der Prozess der Brucherzeugung und Bruchausbreitung in der »Mikroskala« unterhalb eines Werkzeugs bisher noch wenig erforscht. Insbesondere bei anisotropen Gesteinen wie kristallinen Schiefern und Gneisen ist eine Abhängigkeit der felsmechanischen Parameter und der Vortriebsleistungen von der Orientierung des Gefüges bekannt. In dieser Mikroskala könnten jedoch durch die Betrachtung des Löseprozesses bei der Bearbeitung mit verschiedenen Werkzeugen entscheidende Impulse zum Verständnis der Gesteinszerstörung - unter besonderer Berücksichtigung der Anisotropie - ausgelöst werden. In der vorliegenden Arbeit wurden zwei Ansätze zur Bearbeitung dieser Fragestellungen verfolgt: Zunächst wurden in einer Reihe von isotropen und anisotropen Gesteinen unter Baustellenbedingungen verschiedene Bohrversuche mit einer im Tunnelbau üblichen Bohrausrüstung durchgeführt, Proben aus der Bohrlochsohle entnommen und die Rissausbreitung im Gestein mit Hilfe von eingefärbten Dünnschliffen untersucht. Daraus wurden Modelle der mit der Gefügeorientierung verknüpften Rissmuster in Form von Schemazeichnungen entwickelt und ein konstitutionelles Modell der Rissausbreitung und des Bruchprozesses in anisotropen Gesteinen aufgestellt. Im nächsten Schritt wurde mit Hilfe des diskreten Elemente Programms Particle Flow Code (PFC2D, ITASCA) der Vorgang der mechanischen Gebirgslösung in verschiedenen anisotropen Gesteinen simuliert. Die Modellierung mit PFC2D stellt den Hauptteil der vorliegenden Arbeit dar. Im Zuge der Modellierung wurden fünf charakteristische »Mustergesteine« entwickelt (Sand-/Tonstein, Glimmerschiefer, Phyllit und zwei Gneise) und ihre Mikroparameter mit Hilfe eines virtuellen Biaxialversuchs im Hinblick auf ihre Makroparameter - einaxiale Druckfestigkeit und Scherfestigkeit - kalibriert. Anschließend wurde der Löseprozess an diesen »virtuellen« Gesteinen mit verschiedenen, realitätsnahen Werkzeugen simuliert. Dabei kamen verschiedene Hartmetallstifte von Bohrkronen, Schneidringe von Rollenmeißeln sowie eine Rundschaftmeißel-Spitze zum Einsatz. Um der Auswirkung des Werkzeugverschleißes Rechnung zu tragen, wurden bei der Simulation des Schneidens mit einem Disken- oder Rollenmeißel (TBM-Vortrieb) verschiedene Verschleißformen des Werkzeuges generiert und gestestet. Als Ergebnis konnte das charakteristische Rissmuster in Abhängigkeit von der Orientierung der Anisotropie in den verschiedenen Gesteinen dargestellt und verschiedenen Parametern gegenübergestellt werden. Zusammenfassend lassen sich dabei folgende Schlussfolgerungen ziehen: - Durch die Orientierung der Anisotropie wird das Rissmuster unterhalb eines Werkzeuges stark beeinflusst. Die Anzahl der Mikrorisse ist davon weitgehend unabhängig. - Die Rissausbreitung in den Gesteinen wird hauptsächlich durch den Abstand der Schieferungsflächen bestimmt. Die Schieferungsflächen wurden dabei als Schwächezonen (= Zonen verringerter Materialfestigkeit) modelliert. Der entscheidende Faktor hierbei ist der Volumenanteil an Schwächezonen und seine Verteilung im Gestein. - Der Abstand der Schwächezonen beeinflusst die Ausbildung der Rissmuster signifikant. - Die unterschiedlichen Werkzeuge ergeben ein für sie charakteristisches Rissmuster im Gestein. Mittels PFC2D war es nicht möglich, Makrorisse direkt zu erzeugen, an denen sich beispielsweise große Gesteinsbruchstücke ablösen können (sog. Bohrklein oder Chips). Diese sich durch Mikrorisse abzeichnenden Makrorisse müssen erst durch visuelle Verbindung der entsprechenden Mikrorisse manuell in das Rissbild eingetragen werden. - Die Anzahl der Mikrorisse werden von der Geometrie des Werkzeugs bzw. seiner Verschleißform signifikant beeinflusst. Dies wirkt sich im Allgemeinen negativ auf die Löseleistung aus. So konnte beispielsweise nachgewiesen werden, dass abgestumpfte Werkzeuge eine deutlich geringere Rissanzahl erzeugen. - Die Ergebnisse aus der numerischen Modellierung unterstützen die konzeptionellen Modelle der Löseprozesse beim Bohren, Fräsen bzw. Schneiden sowie die makroskopischen Beobachtungen in der Mikroskala (Dünnschliffe aus der Bohrlochsohle). Zur Modellierung des Löseprozesses mussten einige Vereinfachungen und Kompromisse hinsichtlich der Anzahl der Partikel im virtuellen Gestein, der Form der Werkzeuge und der Simulation des Eindringvorgangs eingegangen werden. Daher war klar, dass die Modellierung mit PFC2D die komplexen Vorgänge der Gebirgslösung nicht vollständig simulieren konnte. Insbesondere wäre nach den vorliegenden Ergebnissen der Schritt in eine dreidimensionale Modellierung - beispielsweise mit dem PFC3D - möglich und sinnvoll. Mit der Weiterentwicklung dieses numerischen Codes und der Steigerung der Rechenleistung von PCs könnten Simulationen für solche komplexen Vorgänge wie dem Gesteinszerstörungsprozess durch Werkzeugeineinwirkung in Zukunft möglicherweise sehr realitätsnah dargestellt werden. Damit wären weitere Schritte in Richtung eines annähernd vollständigen Prozessverständnisses möglich.

Detailangaben zum Buch - Einfluss der Anisotropie bei der Gebirgslösung im Tunnelbau - Beobachtung und Modell


EAN (ISBN-13): 9783899371185
ISBN (ISBN-10): 3899371186
Gebundene Ausgabe
Taschenbuch
Erscheinungsjahr: 2010
Herausgeber: Pfeil, Dr. Friedrich
124 Seiten
Gewicht: 0,483 kg
Sprache: ger/Deutsch

Buch in der Datenbank seit 2007-07-31T01:27:41+02:00 (Berlin)
Detailseite zuletzt geändert am 2018-12-12T00:22:50+01:00 (Berlin)
ISBN/EAN: 9783899371185

ISBN - alternative Schreibweisen:
3-89937-118-6, 978-3-89937-118-5


< zum Archiv...
Benachbarte Bücher