- 0 Ergebnisse
Kleinster Preis: € 14,56, größter Preis: € 14,95, Mittelwert: € 14,76
1
Kantendetektion
Bestellen
bei
(ca. € 14,56)

Kantendetektion - Taschenbuch

2011, ISBN: 1159081565, Lieferbar binnen 4-6 Wochen Versandkosten:Versandkostenfrei innerhalb der BRD

ID: 9781159081560

Internationaler Buchtitel. Verlag: General Books, Paperback, 32 Seiten, L=228mm, B=154mm, H=2mm, Gew.=59gr, [GR: 26960 - TB/Medizin/Andere Fachgebiete], [SW: - Medical / Radiology & Nucl… Mehr…

Buchgeier.com
2
Bestellen
bei booklooker.de
€ 14,95
Versand: € 0,00

Herausgeber: Group, Bücher:

Kantendetektion - Taschenbuch

ISBN: 9781159081560

[ED: Softcover], [PU: Books LLC, Reference Series / Books on Demand], Quelle: Wikipedia. Seiten: 30. Nicht dargestellt. Kapitel: Marr-Hildreth-Operator, Canny-Algorithmus, Laplace-Filter,… Mehr…

Versandkosten:Versandkostenfrei, Versand in die EU (EUR 0.00)

  - buecher.de GmbH & Co. KG
Bezahlte Anzeige

Details zum Buch
Kantendetektion

Quelle: Wikipedia. Seiten: 30. Nicht dargestellt. Kapitel: Marr-Hildreth-Operator, Canny-Algorithmus, Laplace-Filter, Sobel-Operator, Roberts-Operator, Kirsch-Operator, Prewitt-Operator. Auszug: Der Marr-Hildreth-Operator oder Laplacian of Gaussian (LoG) ist eine spezielle Form eines diskreten Laplace-Filters und kommt zum Beispiel in der Bildverarbeitung bei der Detektion von Kanten zum Einsatz. Der Filterkernel wird durch die Anwendung des Laplace-Operators auf eine Gauß-Funktion erstellt. Da seine Form der eines mexikanischen Sombreros ähnelt, ist er auch als Mexican Hat oder Sombrerofilter bekannt. Der LoG ist ein isotropes Maß der zweiten Ableitung an ein Bild. Deswegen detektiert er Orte großer Veränderung. In einem Bild sind das gerade Kanten von Objekten, an denen sich die Intensität schnell ändert. Es handelt sich also um einen Filter, der zur Kantendetektion genutzt werden kann. Die Bezeichnung Marr-Hildreth-Operator geht zurück auf David Marr und Ellen Catherine Hildreth. Ausgangspunkt für die Erzeugung des Filterkernels ist die Gauß-Funktion in 2D: . Wendet man den Laplace-Operator auf die Gauß-Funktion an, erhält man die kontinuierliche Repräsentation des LoG: . . Um diese Funktion in der Bildverarbeitung zu nutzen, wird der kontinuierliche LoG diskret approximiert. Die Approximation sollte für Kernel ungerader Kantenlänge durchgeführt werden, wobei der Ursprung des Kernels jeweils in der Mitte liegt - also bei . Ein Pixel großer Beispielkernel, also eine diskrete Approximation des kontinuierlichen LoG mit einer Standardabweichung von , könnte so aussehen: Der Kernel wurde zunächst auf 1 normiert und dann mit 255 (höchster Farbwert eines 8-Bit-Grauwertbildes) multipliziert. Die Form des LoG ist in den Matrixeinträgen deutlich erkennbar. Jetzt kann er mittels Faltung auf ein Bild angewendet werden, um die Kanten zu verdeutlichen: Hierbei bezeichnet die Faltungsoperation, das Eingangsbild und das Bild mit den verdeutlichten Kanten. Der LoG findet im Grunde genommen keine Kanten, sondern Gebiete mit rapiden Änderungen (siehe hierzu die erste Graphik im Artikel über den Laplace-Filter). Aufgrund der zweiten Ableitung erhält man auf einer Seite der

Detailangaben zum Buch - Kantendetektion


EAN (ISBN-13): 9781159081560
ISBN (ISBN-10): 1159081565
Taschenbuch
Erscheinungsjahr: 2011
Herausgeber: General Books
32 Seiten
Gewicht: 0,059 kg
Sprache: ger/Deutsch

Buch in der Datenbank seit 2012-01-15T16:01:12+01:00 (Berlin)
Detailseite zuletzt geändert am 2012-03-26T14:11:58+02:00 (Berlin)
ISBN/EAN: 9781159081560

ISBN - alternative Schreibweisen:
1-159-08156-5, 978-1-159-08156-0


< zum Archiv...