. .
Deutsch
Deutschland
Ähnliche Bücher
Weitere, andere Bücher, die diesem Buch sehr ähnlich sein könnten:
Buch verkaufen
Anbieter, die das Buch mit der ISBN 0817631399 ankaufen:
Suchtools
Anmelden

Anmelden mit Facebook:

Registrieren
Passwort vergessen?


Such-Historie
Merkliste
Links zu eurobuch.com

Dieses Buch teilen auf…
Buchtipps
Aktuelles
Tipp von eurobuch.com
FILTER
- 0 Ergebnisse
Kleinster Preis: 47,02 €, größter Preis: 200,65 €, Mittelwert: 134,92 €
Geometric Theory of Foliations - César Camacho, Alcides Lins Neto
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
César Camacho, Alcides Lins Neto:
Geometric Theory of Foliations - gebunden oder broschiert

ISBN: 0817631399

[SR: 1924711], Hardcover, [EAN: 9780817631390], Birkhäuser, Birkhäuser, Book, [PU: Birkhäuser], Birkhäuser, Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X· curl X • 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu­ mulate asymptotically on the compact leaf. Further, the foliation is C", 13592, Earth Sciences, 16053161, Atmospheric Sciences, 226695, Cartography, 16053231, Climatology, 13577, Crystallography, 13596, Earthquakes & Volcanoes, 13529, Ecology, 13598, Environmental Science, 226694, Geochemistry, 13602, Geography, 13603, Geology, 13605, Geophysics, 13665, Hydrology, 13615, Mineralogy, 13617, Natural Disasters, 13625, Rivers, 14538, Rocks & Minerals, 13628, Seismology, 14484, Weather, 75, Science & Math, 1000, Subjects, 283155, Books, 13871, History & Philosophy, 75, Science & Math, 1000, Subjects, 283155, Books, 226700, Geometry & Topology, 13928, Algebraic Geometry, 13930, Analytic Geometry, 13932, Differential Geometry, 13936, Non-Euclidean Geometries, 13987, Topology, 13884, Mathematics, 75, Science & Math, 1000, Subjects, 283155, Books, 491730, Earth Sciences, 468216, Science & Mathematics, 465600, New, Used & Rental Textbooks, 2349030011, Specialty Boutique, 283155, Books, 491546, Geometry, 468218, Mathematics, 468216, Science & Mathematics, 465600, New, Used & Rental Textbooks, 2349030011, Specialty Boutique, 283155, Books

gebrauchtes bzw. antiquarisches Buch Amazon.com
Midiowa University Bookstore
Gebraucht Versandkosten:Usually ships in 1-2 business days, zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Geometric Theory of Foliations - César Camacho, Alcides Lins Neto
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
César Camacho, Alcides Lins Neto:
Geometric Theory of Foliations - gebunden oder broschiert

ISBN: 0817631399

[SR: 1924711], Hardcover, [EAN: 9780817631390], Birkhäuser, Birkhäuser, Book, [PU: Birkhäuser], Birkhäuser, Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X· curl X • 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu­ mulate asymptotically on the compact leaf. Further, the foliation is C", 13592, Earth Sciences, 16053161, Atmospheric Sciences, 226695, Cartography, 16053231, Climatology, 13577, Crystallography, 13596, Earthquakes & Volcanoes, 13529, Ecology, 13598, Environmental Science, 226694, Geochemistry, 13602, Geography, 13603, Geology, 13605, Geophysics, 13665, Hydrology, 13615, Mineralogy, 13617, Natural Disasters, 13625, Rivers, 14538, Rocks & Minerals, 13628, Seismology, 14484, Weather, 75, Science & Math, 1000, Subjects, 283155, Books, 13871, History & Philosophy, 75, Science & Math, 1000, Subjects, 283155, Books, 226700, Geometry & Topology, 13928, Algebraic Geometry, 13930, Analytic Geometry, 13932, Differential Geometry, 13936, Non-Euclidean Geometries, 13987, Topology, 13884, Mathematics, 75, Science & Math, 1000, Subjects, 283155, Books, 491730, Earth Sciences, 468216, Science & Mathematics, 465600, New, Used & Rental Textbooks, 2349030011, Specialty Boutique, 283155, Books, 491546, Geometry, 468218, Mathematics, 468216, Science & Mathematics, 465600, New, Used & Rental Textbooks, 2349030011, Specialty Boutique, 283155, Books

Neues Buch Amazon.com
the_book_community
Neuware Versandkosten:Usually ships in 1-2 business days, zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Geometric Theory of Foliations - Camacho, César Lins Neto, Alcides
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Camacho, César Lins Neto, Alcides:
Geometric Theory of Foliations - gebunden oder broschiert

ISBN: 9780817631390

[ED: Hardcover], [PU: Springer, Basel Birkhäuser Basel], Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X curl X - 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu mulate asymptotically on the compact leaf. Further, the foliation is C". 1984. viii, 206 S. 1 SW-Abb.,. 254 mm Versandfertig in 3-5 Tagen, [SC: 0.00], Neuware, gewerbliches Angebot

Neues Buch Booklooker.de
buecher.de GmbH & Co. KG
Versandkosten:Versandkostenfrei, Versand nach Deutschland (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Geometric Theory of Foliations - Cesar Camacho
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Cesar Camacho:
Geometric Theory of Foliations - gebunden oder broschiert

ISBN: 9780817631390

ID: 9780817631390

Geometric Theory of Foliations Geometric-Theory-of-Foliations~~Cesar-Camacho Science/Tech>Mathematics>Mathematics Hardcover, Birkhauser Verlag

Neues Buch Barnesandnoble.com
new Versandkosten:zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Geometry Theory of Foliations - Cesar Camacho; Alcides Lins Neto
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Cesar Camacho; Alcides Lins Neto:
Geometry Theory of Foliations - gebunden oder broschiert

1984, ISBN: 9780817631390

ID: 3981179

Hardcover, Buch, [PU: Birkhauser Boston]

Neues Buch Lehmanns.de
Versandkosten:Versand in 7-9 Tagen, , Versandkostenfrei innerhalb der BRD (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.

Details zum Buch
Geometry Theory of Foliations
Autor:

Camacho, César; Lins Neto, Alcides

Titel:

Geometry Theory of Foliations

ISBN-Nummer:

Detailangaben zum Buch - Geometry Theory of Foliations


EAN (ISBN-13): 9780817631390
ISBN (ISBN-10): 0817631399
Gebundene Ausgabe
Erscheinungsjahr: 2007
Herausgeber: Springer-Verlag GmbH
220 Seiten
Gewicht: 0,497 kg
Sprache: eng/Englisch

Buch in der Datenbank seit 29.06.2007 15:06:28
Buch zuletzt gefunden am 21.01.2017 22:36:25
ISBN/EAN: 0817631399

ISBN - alternative Schreibweisen:
0-8176-3139-9, 978-0-8176-3139-0


< zum Archiv...
Benachbarte Bücher