. .
Deutsch
Deutschland
Ähnliche Bücher
Weitere, andere Bücher, die diesem Buch sehr ähnlich sein könnten:
Suchtools
Anmelden

Anmelden mit Facebook:

Registrieren
Passwort vergessen?


Such-Historie
Merkliste
Links zu eurobuch.com

Dieses Buch teilen auf…
..?
Buchtipps
Aktuelles
Tipp von eurobuch.com
FILTER
- 0 Ergebnisse
Kleinster Preis: 108.99 EUR, größter Preis: 108.99 EUR, Mittelwert: 108.99 EUR
Optimal Reliability Modeling - Way Kuo
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Way Kuo:

Optimal Reliability Modeling - neues Buch

ISBN: 9780471275459

ID: 9780471275459

Principles and Applications Inhaltsangabe< b> Preface.< /b> < p> < b> Acknowledgments.< /b> < p> < b> 1 Introduction.< /b> < p> 1.1 Needs for Reliability Modeling.< p> 1.2 Optimal Design.< p> < b> 2 Reliability Mathematics.< /b> < p> 2.1 Probability and Distributions.< p> 2.1.1 Events and Boolean Algebra.< p> 2.1.2 Probabilities of Events.< p> 2.1.3 Random Variables and Their Characteristics.< p> 2.1.4 Multivariate Distributions.< p> 2.1.5 Special Discrete Distributions.< p> 2.1.6 Special Continuous Distributions.< p> 2.2 Reliability Concepts.< p> 2.3 Commonly Used Lifetime Distributions.< p> 2.4 Stochastic Processes.< p> 2.4.1 General Definitions.< p> 2.4.2 Homogeneous Poisson Process.< p> 2.4.3 Nonhomogeneous Poisson Process.< p> 2.4.4 Renewal Process.< p> 2.4.5 Discrete-Time Markov Chains.< p> 2.4.6 Continuous-Time Markov Chains.< p> 2.5 Complex System Reliability Assessment Using Fault Tree Analysis.< p> < b> 3 Complexity Analysis.< /b> < p> 3.1 Orders of Magnitude and Growth.< p> 3.2 Evaluation of Summations.< p> 3.3 Bounding Summations.< p> 3.4 Recurrence Relations.< p> 3.4.1 Expansion Method.< p> 3.4.2 Guess-and-Prove Method.< p> 3.4.3 Master Method.< p> 3.5 Summary.< p> < b> 4 Fundamental System Reliability Models.< /b> < p> 4.1 Reliability Block Diagram.< p> 4.2 Structure Functions.< p> 4.3 Coherent Systems.< p> 4.4 Minimal Paths and Minimal Cuts.< p> 4.5 Logic Functions.< p> 4.6 Modules within a Coherent System.< p> 4.7 Measures of Performance.< p> 4.8 One-Component System.< p> 4.9 Series System Model.< p> 4.9.1 System Reliability Function and MTTF.< p> 4.9.2 System Availability.< p> 4.10 Parallel System Model.< p> 4.10.1 System Reliability Function and MTTF.< p> 4.10.2 System Availability of Parallel System with Two i.i.d. Components.< p> 4.10.3 System Availability of Parallel System with Two Different Components.< p> 4.10.4 Parallel Systems with < i> n< /i> i.i.d. Components.< p> 4.11 Parallel& #8211 Series System Model.< p> 4.12 Series& #8211 Parallel System Model.< p> 4.13 Standby System Model.< p> 4.13.1 Cold Standby Systems.< p> 4.13.2 Warm Standby Systems.< p> < b> 5 General Methods for System Reliability Evaluation.< /b> < p> 5.1 Parallel and Series Reductions.< p> 5.2 Pivotal Decomposition.< p> 5.3 Generation of Minimal Paths and Minimal Cuts.< p> 5.3.1 Connection Matrix.< p> 5.3.2 Node Removal Method for Generation of Minimal Paths.< p> 5.3.3 Generation of Minimal Cuts from Minimal Paths.< p> 5.4 Inclusion& #8211 Exclusion Method.< p> 5.5 Sum-of-Disjoint-Products Method.< p> 5.6 Markov Chain Imbeddable Structures.< p> 5.6.1 MIS Technique in Terms of System Failures.< p> 5.6.2 MIS Technique in Terms of System Success.< p> 5.7 Delta& #8211 Star and Star& #8211 Delta Transformations.< p> 5.7.1 Star or Delta Structure with One Input Node and Two Output Nodes.< p> 5.7.2 Delta Structure in Which Each Node May Be either an Input Node or an Output Node.< p> 5.8 Bounds on System Reliability.< p> 5.8.1 IE Method.< p> 5.8.2 SDP Method.< p> 5.8.3 Esary& #8211 Proschan (EP) Method.< p> 5.8.4 Min& #8211 Max Bounds.< p> 5.8.5 Modular Decompositions.< p> 5.8.6 Notes.< p> < b> 6 General Methodology for System Design.< /b> < p> 6.1 Redundancy in System Design.< p> 6.2 Measures of Component Importance.< p> 6.2.1 Structural Importance.< p> 6.2.2 Reliability Importance.< p> 6.2.3 Criticality Importance.< p> 6.2.4 Relative Criticality.< p> 6.3 Majorization and Its Application in Reliability.< p> 6.3.1 Definition of Majorization.< p> 6.3.2 Schur Functions.< p> 6.3.3 L-Additive Functions.< p> 6.4 Reliability Importance in Optimal Design.< p> 6.5 Pairwise Rearrangement in Optimal Design.< p> 6.6 Opt of< i> n< /i> Systems.< p> 7.3.1 Systems with i.i.d. Components.< p> 7.3.2 Systems with Nonidentical Components.< p> 7.3.3 Systems with LoadSharing Components Following Exponential Lifetime Distributions.< p> 7.3.4 Systems with LoadSharing Components Following Arbitrary Lifetime Distributions.< p> 7.3.5 Systems with Standby Components.< p> 7.4 Repairable < i> k< /i> outof< i> n< /i> Systems.< p> 7.4.1 General Repairable System Model.< p> 7.4.2 Systems with Active Redundant Components.< p> 7.4.3 Systems with LoadSharing Components.< p> 7.4.4 Systems with both Active Redundant and Cold Standby Components.< p> 7.5 Weighted < i> k< /i> outof< i> n< /i> :G Systems.< p> < b> 8 Design of< /b> < b> < i> k< /i> < /b> < b> outof< /b> < b> < i> n< /i> < /b> < b> Systems.< /b> < p> 8.1 Properties of < i> k< /i> outof< i> n< /i> Systems.< p> 8.1.1 Component Reliability Importance.< p> 8.1.2 Effects of Redundancy in < i> k< /i> outof< i> n< /i> Systems.< p> 8.2 Optimal Design of < i> k< /i> outof< i> n< /i> Systems.< p> 8.2.1 Optimal System Size < i> n< /i> .< p> 8.2.2 Simultaneous Determination of < i> n< /i> and < i> k< /i> .< p> 8.2.3 Optimal Replacement Time.< p> 8.3 Fault Coverage.< p> 8.3.1 Deterministic Analysis.< p> 8.3.2 Stochastic Analysis.< p> 8.4 CommonCause Failures.< p> 8.4.1 Repairable System with Lethal CommonCause Failures.< p> 8.4.2 System Design Considering Lethal CommonCause Failures.< p> 8.4.3 Optimal Replacement Policy with Lethal CommonCause Failures.< p> 8.4.4 Nonlethal CommonCause Failures.< p> 8.5 Dual Failure Modes.< p> 8.5.1 Optimal < i> k< /i> or < i> n< /i> Value to Maximize System Reliability.< p> 8.5.2 Optimal < i> k< /i> or < i> n< /i> Value to Maximize System Profit.< p> 8.5.3 Optimal < i> k< /i> and < i> n< /i> Values to Minimize System Cost.< p> 8.6 Other Issues.< p> 8.6.1 Selective Replacement Optimization.< p> 8.6.2 TMR and NMR Structures.< p> 8.6.3 Installation Time of Repaired Components.< p> 8.6.4 Combinations of Factors.< p> 8.6.5 Partial Ordering.< p> < b> 9 Consecutive< /b> < b> < i> k< /i> < /b> < b> outof< /b> < b> < i> n< /i> < /b> < b> Systems.< /b> < p> 9.1 System Reliability Evaluation.< p> 9.1.1 Systems with i.i.d. Components.< p> 9.1.2 Systems with Independent Components.< p> 9.2 Optimal System Design.< p> 9.2.1 BImportances of Components.< p> 9.2.2 Invariant Optimal Design.< p> 9.2.3 Variant Optimal Design.< p> 9.3 Consecutive< i> k< /i> outof< i> n< /i> :G Systems.< p> 9.3.1 System Reliability Evaluation.< p> 9.3.2 Component Reliability Importance.< p> 9.3.3 Invariant Optimal Design.< p> 9.3.4 Variant Optimal Design.< p> 9.4 System Lifetime Distribution.< p> 9.4.1 Systems with i.i.d. Components.< p> 9.4.2 System with Exchangeable Dependent Components.< p> 9.4.3 System with (< i> k< /i> 1)Step MarkovDependent Components.< p> 9.4.4 Repairable Consecutive< i> k< /i> outof< i> n< /i> Systems.< p> 9.5 Summary.< p> < b> 10 Multidimensional Consecutive< /b> < b> < i> k< /i> < /b> < b> outof< /b> < b> < i> n< /i> < /b> < b> Systems.< /b> < p> 10.1 System Reliability Evaluation.< p> 10.1.1 Special Multidimensional Systems.< p> 10.1.2 General TwoDimensional Systems.< p> 10.1.3 Bounds and Approximations.< p> 10.2 System Logic Functions.< p> 10.3 Optimal System Design.< p> 10.4 Summary.< p> < b> 11 Other< /b> < b> < i> k< /i> < /b> < b> outof< /b> < b> < i> n< /i> < i> s< /i> < i> )/(< /i> < i> m< /i> < i> ,< /i> < i> n< /i> < i> )< /i> :F System.< p> 11.8 Combined < i> k< /i> -out-of-< i> mn< /i> :F, One-Dimensional < i> Con< /i> < i> /< /i> < i> k< /i> < i> c< /i> < i> /< /i> < i> n< /i> :F, and Two-Dimensional Linear < i> (< /i> < i> r< /i> < i> ,< /i> < i> s< /i> < i> )/(< /i> < i> m< /i> < i> ,< /i> < i> n< /i> < i> )< /i> :F Model.< p> 11.9 Application of Combined < i> k< /i> -out-of-< i> n< /i> and Consecutive-< i> k< /i> -out-of-< i> n< /i> Systems.< p> 11.10 Consecutively Connected Systems.< p> 11.11 Weighted Consecutive-< i> k< /i> -out-of-< i> n< /i> Systems.< p> 11.11.1 Weighted Linear Consecutive-< i> k< /i> -out-of-< i> n< /i> :F Systems.< p> 11.11.2 Weighted Circular Consecutive-< i> k< /i> -out-of-< i> n< /i> :F Systems.< p> < b> 12 Multistate System Models.< /b> < p> 12.1 Consecutively Connected Systems with Binary System State and Multistate Components.< p> 12.1.1 Linear Multistate Consecutively Connected Systems.< p> 12.1.2 Circular Multistate Consecutively Connected Systems.< p> 12.1.3 Tree-Structured Consecutively Connected Systems.< p> 12.2 Two-Way Consecutively Connected Systems.< p> 12.3 Key Concepts in Multistate Reliability Theory.< p> 12.4 Special Multistate Systems and Their Performance Evaluation.< p> 12.4.1 Simple Multistate < i> k< /i> -out-of-< i> n< /i> :G Model.< p> 12.4.2 Generalized Multistate < i> k< /i> -out-of-< i> n< /i> :G Model.< p> 12.4.3 Generalized Multistate Consecutive-< i> k< /i> -out-of-< i> n< /i> :F System.< p> 12.5 General Multistate Systems and Their Performance Evaluation.< p> 12.6 Summary.< p> < b> Appendix: Laplace Transform.< /b> < p> < b> References.< /b> < p> < b> Bibliography.< /b> < p> < b> Index.< /b> Optimal Reliability Modeling: Inhaltsangabe< b> Preface.< /b> < p> < b> Acknowledgments.< /b> < p> < b> 1 Introduction.< /b> < p> 1.1 Needs for Reliability Modeling.< p> 1.2 Optimal Design.< p> < b> 2 Reliability Mathematics.< /b> < p> 2.1 Probability and Distributions.< p> 2.1.1 Events and Boolean Algebra.< p> 2.1.2 Probabilities of Events.< p> 2.1.3 Random Variables and Their Characteristics.< p> 2.1.4 Multivariate Distributions.< p> 2.1.5 Special Discrete Distributions.< p> 2.1.6 Special Continuous Distributions.< p> 2.2 Reliability Concepts.< p> 2.3 Commonly Used Lifetime Distributions.< p> 2.4 Stochastic Processes.< p> 2.4.1 General Definitions.< p> 2.4.2 Homogeneous Poisson Process.< p> 2.4.3 Nonhomogeneous Poisson Process.< p> 2.4.4 Renewal Process.< p> 2.4.5 Discrete-Time Markov Chains.< p> 2.4.6 Continuous-Time Markov Chains.< p> 2.5 Complex System Reliability Assessment Using Fault Tree Analysis.< p> < b> 3 Complexity Analysis.< /b> < p> 3.1 Orders of Magnitude and Growth.< p> 3.2 Evaluation of Summations.< p> 3.3 Bounding Summations.< p> 3.4 Recurrence Relations.< p> 3.4.1 Expansion Method.< p> 3.4.2 Guess-and-Prove Method.< p> 3.4.3 Master Method.< p> 3.5 Summary.< p> < b> 4 Fundamental System Reliability Models.< /b> < p> 4.1 Reliability Block Diagram.< p> 4.2 Structure Functions.< p> 4.3 Coherent Systems.< p> 4.4 Minimal Paths and Minimal Cuts.< p> 4.5 Logic Functions.< p> 4.6 Modules within a Coherent System.< p> 4.7 Measures of Performance.< p> 4.8 One-Component System.< p> 4.9 Series System Model.< p> 4.9.1 System Reliability Function and MTTF.< p> 4.9.2 System Availability.< p> 4.10 Parallel System Model.< p> 4.10.1 System Reliability Function and MTTF.< p> 4.10.2 System Availability of Parallel System with Two i.i.d. Components.< p> 4.10.3 System Availability of Parallel System with Two Different Components.< p> 4.10.4 Parallel Systems with < i> n< /i> i.i.d. Components.< p> 4.11 Parallel& #8211 Series System Model.< p> 4.12 Series& #8211 Parallel System Model.< p> 4.13 Standby System Model.< p> 4.13.1 Cold Standby Systems.< p> 4.13.2 Warm Standby Systems.< p> < b> 5 General Methods for System Reliability Evaluation.< /b> < p> 5.1 Parallel and Series Reductions.< p> 5.2 Pivotal Decomposition.< p> 5.3 Generation of Minimal Paths and Minimal Cuts.< p> 5.3.1 Connection Matrix.< p> 5.3.2 Node Removal Method for Generation of Minimal Paths.< p> 5.3.3 Generation of Minimal Cuts from Minimal Paths.< p> 5.4 Inclusion& #8211 Exclusion Method.< p> 5.5 Sum-of-Disjoint-Products Method.< p> 5.6 Markov Chain Imbeddable Structures.< p> 5.6.1 MIS Technique in Terms of System Failures.< p> 5.6.2 MIS Technique in Terms of System Success.< p> 5.7 Delta& #8211 Star and Star& #8211 Delta Transformations.< p> 5.7.1 Star or Delta Structure with One Input Node and Two Output Nodes.< p> 5.7.2 Delta Structure in Which Each Node May Be either an Input Node or an Output Node.< p> 5.8 Bounds on System Reliability.< p> 5.8.1 IE Method.< p> 5.8.2 SDP Method.< p> 5.8.3 Esary& #8211 Proschan (EP) Method.< p> 5.8.4 Min& #8211 Max Bounds.< p> 5.8.5 Modular Decompositions.< p> 5.8.6 Notes.< p> < b> 6 General Methodology for System Design.< /b> < p> 6.1 Redundancy in System Design.< p> 6.2 Measures of Component Importance.< p> 6.2.1 Structural Importance.< p> 6.2.2 Reliability Importance.< p> 6.2.3 Criticality Importance.< p> 6.2.4 Relative Criticality.< p> 6.3 Majorization and Its Application in Reliability.< p> 6.3.1 Definition of Majorization.< p> 6.3.2 Schur Functions.< p> 6.3.3 L-Additive Functions.< p> 6.4 Reliability Importance in Optimal Design.< p> 6.5 Pairwise Rearrangement in Optimal Design.< p> 6.6 Opt of< i> n< /i> Systems.< p> 7.3.1 Systems with i.i.d. Components.< p> 7.3.2 Systems wi, John Wiley & Sons

Neues Buch Rheinberg-Buch.de
Versandkosten:Ab 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Optimal Reliability Modeling - Way Kuo
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)

Way Kuo:

Optimal Reliability Modeling - neues Buch

ISBN: 9780471275459

ID: 9780471275459

Principles and Applications Inhaltsangabe< b> Preface.< /b> < p> < b> Acknowledgments.< /b> < p> < b> 1 Introduction.< /b> < p> 1.1 Needs for Reliability Modeling.< p> 1.2 Optimal Design.< p> < b> 2 Reliability Mathematics.< /b> < p> 2.1 Probability and Distributions.< p> 2.1.1 Events and Boolean Algebra.< p> 2.1.2 Probabilities of Events.< p> 2.1.3 Random Variables and Their Characteristics.< p> 2.1.4 Multivariate Distributions.< p> 2.1.5 Special Discrete Distributions.< p> 2.1.6 Special Continuous Distributions.< p> 2.2 Reliability Concepts.< p> 2.3 Commonly Used Lifetime Distributions.< p> 2.4 Stochastic Processes.< p> 2.4.1 General Definitions.< p> 2.4.2 Homogeneous Poisson Process.< p> 2.4.3 Nonhomogeneous Poisson Process.< p> 2.4.4 Renewal Process.< p> 2.4.5 Discrete-Time Markov Chains.< p> 2.4.6 Continuous-Time Markov Chains.< p> 2.5 Complex System Reliability Assessment Using Fault Tree Analysis.< p> < b> 3 Complexity Analysis.< /b> < p> 3.1 Orders of Magnitude and Growth.< p> 3.2 Evaluation of Summations.< p> 3.3 Bounding Summations.< p> 3.4 Recurrence Relations.< p> 3.4.1 Expansion Method.< p> 3.4.2 Guess-and-Prove Method.< p> 3.4.3 Master Method.< p> 3.5 Summary.< p> < b> 4 Fundamental System Reliability Models.< /b> < p> 4.1 Reliability Block Diagram.< p> 4.2 Structure Functions.< p> 4.3 Coherent Systems.< p> 4.4 Minimal Paths and Minimal Cuts.< p> 4.5 Logic Functions.< p> 4.6 Modules within a Coherent System.< p> 4.7 Measures of Performance.< p> 4.8 One-Component System.< p> 4.9 Series System Model.< p> 4.9.1 System Reliability Function and MTTF.< p> 4.9.2 System Availability.< p> 4.10 Parallel System Model.< p> 4.10.1 System Reliability Function and MTTF.< p> 4.10.2 System Availability of Parallel System with Two i.i.d. Components.< p> 4.10.3 System Availability of Parallel System with Two Different Components.< p> 4.10.4 Parallel Systems with < i> n< /i> i.i.d. Components.< p> 4.11 Parallel& #8211 Series System Model.< p> 4.12 Series& #8211 Parallel System Model.< p> 4.13 Standby System Model.< p> 4.13.1 Cold Standby Systems.< p> 4.13.2 Warm Standby Systems.< p> < b> 5 General Methods for System Reliability Evaluation.< /b> < p> 5.1 Parallel and Series Reductions.< p> 5.2 Pivotal Decomposition.< p> 5.3 Generation of Minimal Paths and Minimal Cuts.< p> 5.3.1 Connection Matrix.< p> 5.3.2 Node Removal Method for Generation of Minimal Paths.< p> 5.3.3 Generation of Minimal Cuts from Minimal Paths.< p> 5.4 Inclusion& #8211 Exclusion Method.< p> 5.5 Sum-of-Disjoint-Products Method.< p> 5.6 Markov Chain Imbeddable Structures.< p> 5.6.1 MIS Technique in Terms of System Failures.< p> 5.6.2 MIS Technique in Terms of System Success.< p> 5.7 Delta& #8211 Star and Star& #8211 Delta Transformations.< p> 5.7.1 Star or Delta Structure with One Input Node and Two Output Nodes.< p> 5.7.2 Delta Structure in Which Each Node May Be either an Input Node or an Output Node.< p> 5.8 Bounds on System Reliability.< p> 5.8.1 IE Method.< p> 5.8.2 SDP Method.< p> 5.8.3 Esary& #8211 Proschan (EP) Method.< p> 5.8.4 Min& #8211 Max Bounds.< p> 5.8.5 Modular Decompositions.< p> 5.8.6 Notes.< p> < b> 6 General Methodology for System Design.< /b> < p> 6.1 Redundancy in System Design.< p> 6.2 Measures of Component Importance.< p> 6.2.1 Structural Importance.< p> 6.2.2 Reliability Importance.< p> 6.2.3 Criticality Importance.< p> 6.2.4 Relative Criticality.< p> 6.3 Majorization and Its Application in Reliability.< p> 6.3.1 Definition of Majorization.< p> 6.3.2 Schur Functions.< p> 6.3.3 L-Additive Functions.< p> 6.4 Reliability Importance in Optimal Design.< p> 6.5 Pairwise Rearrangement in Optimal Design.< p> 6.6 Opt of< i> n< /i> Systems.< p> 7.3.1 Systems with i.i.d. Components.< p> 7.3.2 Systems with Nonidentical Components.< p> 7.3.3 Systems with LoadSharing Components Following Exponential Lifetime Distributions.< p> 7.3.4 Systems with LoadSharing Components Following Arbitrary Lifetime Distributions.< p> 7.3.5 Systems with Standby Components.< p> 7.4 Repairable < i> k< /i> outof< i> n< /i> Systems.< p> 7.4.1 General Repairable System Model.< p> 7.4.2 Systems with Active Redundant Components.< p> 7.4.3 Systems with LoadSharing Components.< p> 7.4.4 Systems with both Active Redundant and Cold Standby Components.< p> 7.5 Weighted < i> k< /i> outof< i> n< /i> :G Systems.< p> < b> 8 Design of< /b> < b> < i> k< /i> < /b> < b> outof< /b> < b> < i> n< /i> < /b> < b> Systems.< /b> < p> 8.1 Properties of < i> k< /i> outof< i> n< /i> Systems.< p> 8.1.1 Component Reliability Importance.< p> 8.1.2 Effects of Redundancy in < i> k< /i> outof< i> n< /i> Systems.< p> 8.2 Optimal Design of < i> k< /i> outof< i> n< /i> Systems.< p> 8.2.1 Optimal System Size < i> n< /i> .< p> 8.2.2 Simultaneous Determination of < i> n< /i> and < i> k< /i> .< p> 8.2.3 Optimal Replacement Time.< p> 8.3 Fault Coverage.< p> 8.3.1 Deterministic Analysis.< p> 8.3.2 Stochastic Analysis.< p> 8.4 CommonCause Failures.< p> 8.4.1 Repairable System with Lethal CommonCause Failures.< p> 8.4.2 System Design Considering Lethal CommonCause Failures.< p> 8.4.3 Optimal Replacement Policy with Lethal CommonCause Failures.< p> 8.4.4 Nonlethal CommonCause Failures.< p> 8.5 Dual Failure Modes.< p> 8.5.1 Optimal < i> k< /i> or < i> n< /i> Value to Maximize System Reliability.< p> 8.5.2 Optimal < i> k< /i> or < i> n< /i> Value to Maximize System Profit.< p> 8.5.3 Optimal < i> k< /i> and < i> n< /i> Values to Minimize System Cost.< p> 8.6 Other Issues.< p> 8.6.1 Selective Replacement Optimization.< p> 8.6.2 TMR and NMR Structures.< p> 8.6.3 Installation Time of Repaired Components.< p> 8.6.4 Combinations of Factors.< p> 8.6.5 Partial Ordering.< p> < b> 9 Consecutive< /b> < b> < i> k< /i> < /b> < b> outof< /b> < b> < i> n< /i> < /b> < b> Systems.< /b> < p> 9.1 System Reliability Evaluation.< p> 9.1.1 Systems with i.i.d. Components.< p> 9.1.2 Systems with Independent Components.< p> 9.2 Optimal System Design.< p> 9.2.1 BImportances of Components.< p> 9.2.2 Invariant Optimal Design.< p> 9.2.3 Variant Optimal Design.< p> 9.3 Consecutive< i> k< /i> outof< i> n< /i> :G Systems.< p> 9.3.1 System Reliability Evaluation.< p> 9.3.2 Component Reliability Importance.< p> 9.3.3 Invariant Optimal Design.< p> 9.3.4 Variant Optimal Design.< p> 9.4 System Lifetime Distribution.< p> 9.4.1 Systems with i.i.d. Components.< p> 9.4.2 System with Exchangeable Dependent Components.< p> 9.4.3 System with (< i> k< /i> 1)Step MarkovDependent Components.< p> 9.4.4 Repairable Consecutive< i> k< /i> outof< i> n< /i> Systems.< p> 9.5 Summary.< p> < b> 10 Multidimensional Consecutive< /b> < b> < i> k< /i> < /b> < b> outof< /b> < b> < i> n< /i> < /b> < b> Systems.< /b> < p> 10.1 System Reliability Evaluation.< p> 10.1.1 Special Multidimensional Systems.< p> 10.1.2 General TwoDimensional Systems.< p> 10.1.3 Bounds and Approximations.< p> 10.2 System Logic Functions.< p> 10.3 Optimal System Design.< p> 10.4 Summary.< p> < b> 11 Other< /b> < b> < i> k< /i> < /b> < b> outof< /b> < b> < i> n< /i> < i> s< /i> < i> )/(< /i> < i> m< /i> < i> ,< /i> < i> n< /i> < i> )< /i> :F System.< p> 11.8 Combined < i> k< /i> -out-of-< i> mn< /i> :F, One-Dimensional < i> Con< /i> < i> /< /i> < i> k< /i> < i> c< /i> < i> /< /i> < i> n< /i> :F, and Two-Dimensional Linear < i> (< /i> < i> r< /i> < i> ,< /i> < i> s< /i> < i> )/(< /i> < i> m< /i> < i> ,< /i> < i> n< /i> < i> )< /i> :F Model.< p> 11.9 Application of Combined < i> k< /i> -out-of-< i> n< /i> and Consecutive-< i> k< /i> -out-of-< i> n< /i> Systems.< p> 11.10 Consecutively Connected Systems.< p> 11.11 Weighted Consecutive-< i> k< /i> -out-of-< i> n< /i> Systems.< p> 11.11.1 Weighted Linear Consecutive-< i> k< /i> -out-of-< i> n< /i> :F Systems.< p> 11.11.2 Weighted Circular Consecutive-< i> k< /i> -out-of-< i> n< /i> :F Systems.< p> < b> 12 Multistate System Models.< /b> < p> 12.1 Consecutively Connected Systems with Binary System State and Multistate Components.< p> 12.1.1 Linear Multistate Consecutively Connected Systems.< p> 12.1.2 Circular Multistate Consecutively Connected Systems.< p> 12.1.3 Tree-Structured Consecutively Connected Systems.< p> 12.2 Two-Way Consecutively Connected Systems.< p> 12.3 Key Concepts in Multistate Reliability Theory.< p> 12.4 Special Multistate Systems and Their Performance Evaluation.< p> 12.4.1 Simple Multistate < i> k< /i> -out-of-< i> n< /i> :G Model.< p> 12.4.2 Generalized Multistate < i> k< /i> -out-of-< i> n< /i> :G Model.< p> 12.4.3 Generalized Multistate Consecutive-< i> k< /i> -out-of-< i> n< /i> :F System.< p> 12.5 General Multistate Systems and Their Performance Evaluation.< p> 12.6 Summary.< p> < b> Appendix: Laplace Transform.< /b> < p> < b> References.< /b> < p> < b> Bibliography.< /b> < p> < b> Index.< /b> Optimal Reliability Modeling: Inhaltsangabe< b> Preface.< /b> < p> < b> Acknowledgments.< /b> < p> < b> 1 Introduction.< /b> < p> 1.1 Needs for Reliability Modeling.< p> 1.2 Optimal Design.< p> < b> 2 Reliability Mathematics.< /b> < p> 2.1 Probability and Distributions.< p> 2.1.1 Events and Boolean Algebra.< p> 2.1.2 Probabilities of Events.< p> 2.1.3 Random Variables and Their Characteristics.< p> 2.1.4 Multivariate Distributions.< p> 2.1.5 Special Discrete Distributions.< p> 2.1.6 Special Continuous Distributions.< p> 2.2 Reliability Concepts.< p> 2.3 Commonly Used Lifetime Distributions.< p> 2.4 Stochastic Processes.< p> 2.4.1 General Definitions.< p> 2.4.2 Homogeneous Poisson Process.< p> 2.4.3 Nonhomogeneous Poisson Process.< p> 2.4.4 Renewal Process.< p> 2.4.5 Discrete-Time Markov Chains.< p> 2.4.6 Continuous-Time Markov Chains.< p> 2.5 Complex System Reliability Assessment Using Fault Tree Analysis.< p> < b> 3 Complexity Analysis.< /b> < p> 3.1 Orders of Magnitude and Growth.< p> 3.2 Evaluation of Summations.< p> 3.3 Bounding Summations.< p> 3.4 Recurrence Relations.< p> 3.4.1 Expansion Method.< p> 3.4.2 Guess-and-Prove Method.< p> 3.4.3 Master Method.< p> 3.5 Summary.< p> < b> 4 Fundamental System Reliability Models.< /b> < p> 4.1 Reliability Block Diagram.< p> 4.2 Structure Functions.< p> 4.3 Coherent Systems.< p> 4.4 Minimal Paths and Minimal Cuts.< p> 4.5 Logic Functions.< p> 4.6 Modules within a Coherent System.< p> 4.7 Measures of Performance.< p> 4.8 One-Component System.< p> 4.9 Series System Model.< p> 4.9.1 System Reliability Function and MTTF.< p> 4.9.2 System Availability.< p> 4.10 Parallel System Model.< p> 4.10.1 System Reliability Function and MTTF.< p> 4.10.2 System Availability of Parallel System with Two i.i.d. Components.< p> 4.10.3 System Availability of Parallel System with Two Different Components.< p> 4.10.4 Parallel Systems with < i> n< /i> i.i.d. Components.< p> 4.11 Parallel& #8211 Series System Model.< p> 4.12 Series& #8211 Parallel System Model.< p> 4.13 Standby System Model.< p> 4.13.1 Cold Standby Systems.< p> 4.13.2 Warm Standby Systems.< p> < b> 5 General Methods for System Reliability Evaluation.< /b> < p> 5.1 Parallel and Series Reductions.< p> 5.2 Pivotal Decomposition.< p> 5.3 Generation of Minimal Paths and Minimal Cuts.< p> 5.3.1 Connection Matrix.< p> 5.3.2 Node Removal Method for Generation of Minimal Paths.< p> 5.3.3 Generation of Minimal Cuts from Minimal Paths.< p> 5.4 Inclusion& #8211 Exclusion Method.< p> 5.5 Sum-of-Disjoint-Products Method.< p> 5.6 Markov Chain Imbeddable Structures.< p> 5.6.1 MIS Technique in Terms of System Failures.< p> 5.6.2 MIS Technique in Terms of System Success.< p> 5.7 Delta& #8211 Star and Star& #8211 Delta Transformations.< p> 5.7.1 Star or Delta Structure with One Input Node and Two Output Nodes.< p> 5.7.2 Delta Structure in Which Each Node May Be either an Input Node or an Output Node.< p> 5.8 Bounds on System Reliability.< p> 5.8.1 IE Method.< p> 5.8.2 SDP Method.< p> 5.8.3 Esary& #8211 Proschan (EP) Method.< p> 5.8.4 Min& #8211 Max Bounds.< p> 5.8.5 Modular Decompositions.< p> 5.8.6 Notes.< p> < b> 6 General Methodology for System Design.< /b> < p> 6.1 Redundancy in System Design.< p> 6.2 Measures of Component Importance.< p> 6.2.1 Structural Importance.< p> 6.2.2 Reliability Importance.< p> 6.2.3 Criticality Importance.< p> 6.2.4 Relative Criticality.< p> 6.3 Majorization and Its Application in Reliability.< p> 6.3.1 Definition of Majorization.< p> 6.3.2 Schur Functions.< p> 6.3.3 L-Additive Functions.< p> 6.4 Reliability Importance in Optimal Design.< p> 6.5 Pairwise Rearrangement in Optimal Design.< p> 6.6 Opt of< i> n< /i> Systems.< p> 7.3.1 Systems with i.i.d. Components.< p> 7.3.2 Systems w, John Wiley & Sons

Neues Buch Rheinberg-Buch.de
Versandkosten:Ab 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Optimal Reliability Modeling - Principles and Applications - Kuo, Way; Zuo, Ming J.
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Kuo, Way; Zuo, Ming J.:
Optimal Reliability Modeling - Principles and Applications - neues Buch

2003

ISBN: 047127545X

ID: 9780471275459

In englischer Sprache. Verlag: Wiley, J, WAY KUO, PHD, is holder of the Wisenbaker Chair of Engineering in Innovation at Texas A&M University and Editor of IEEE Transactions on Reliability. MING J. ZUO, PHD, is Professor of Industrial Engineering in the Department of Mechanical Engineering at the University of Alberta in Canada. PC-PDF, 560 Seiten, 1., Auflage, [GR: 9689 - Nonbooks, PBS / Technik/Sonstiges], [SW: - Technologie, allgemein], [Ausgabe: 1][PU:Wiley, J], [PU: Wiley]

Neues Buch Libreka.de
Libreka
Versandkosten:Versandkostenfrei innerhalb der BRD (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Optimal Reliability Modeling - Way Kuo;Ming J. Zuo
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Way Kuo;Ming J. Zuo:
Optimal Reliability Modeling - neues Buch

ISBN: 9780471275459

ID: 9780471275459

Principles and Applications, Principles and Applications, [KW: GEISTESWISSENSCHAFTEN KUNST MUSIK , KUNST , ARCHITEKTUR ,TECHNIK , WISSEN ,ARCHITEKTUR ,PDF] GEISTESWISSENSCHAFTEN KUNST MUSIK , KUNST , ARCHITEKTUR ,TECHNIK , WISSEN ,ARCHITEKTUR ,PDF, [PU: Wiley]

Neues Buch Libri.de
libri.de (eBooks)
Sofort lieferbar (Download), E-Book zum Download Versandkosten:Versandkostenfrei innerhalb der BRD (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Optimal Reliability Modeling - Way Kuo;  Ming J. Zuo
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Way Kuo; Ming J. Zuo:
Optimal Reliability Modeling - Erstausgabe

2003, ISBN: 9780471275459

ID: 25496943

Principles and Applications, [ED: 1], Auflage, eBook Download (PDF), eBooks, [PU: Wiley]

Neues Buch Lehmanns.de
Versandkosten:Download sofort lieferbar, , Versandkostenfrei innerhalb der BRD (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.

< zum Suchergebnis...
Details zum Buch
Optimal Reliability Modeling
Autor:

Kuo, Way;Zuo, Ming J.

Titel:

Optimal Reliability Modeling

ISBN-Nummer:

9780471275459

Detailangaben zum Buch - Optimal Reliability Modeling


EAN (ISBN-13): 9780471275459
ISBN (ISBN-10): 047127545X
Erscheinungsjahr: 2003
Herausgeber: Wiley, J
560 Seiten
Sprache: eng/Englisch

Buch in der Datenbank seit 23.08.2007 04:53:24
Buch zuletzt gefunden am 11.03.2015 17:48:39
ISBN/EAN: 9780471275459

ISBN - alternative Schreibweisen:
0-471-27545-X, 978-0-471-27545-9

< zum Suchergebnis...
< zum Archiv...
Benachbarte Bücher