. .
Deutsch
Deutschland
Ähnliche Bücher
Weitere, andere Bücher, die diesem Buch sehr ähnlich sein könnten:
Suchtools
Anmelden

Anmelden mit Facebook:

Registrieren
Passwort vergessen?


Such-Historie
Merkliste
Links zu eurobuch.com

Dieses Buch teilen auf…
..?
Buchtipps
Aktuelles
Tipp von eurobuch.com
FILTER
- 0 Ergebnisse
Kleinster Preis: 52.56 EUR, größter Preis: 69.54 EUR, Mittelwert: 60.97 EUR
PT-Symmetric Schrödinger Operators with Unbounded Potentials - Jan Nesemann
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Jan Nesemann:

PT-Symmetric Schrödinger Operators with Unbounded Potentials - neues Buch

ISBN: 9783834817624

ID: 2b2080d8448c03d7a612c137fb177046

PT-Symmetric Schrödinger Operators with Unbounded Potentials Following the pioneering work of Carl M. Bender et al. (1998), there has been an increasing interest in theoretical physics in so-called PT-symmetric Schrödinger operators. In the physical literature, the existence of Schrödinger operators with PT-symmetric complex potentials having real spectrum was considered a surprise and many examples of such potentials were studied in the sequel. From a mathematical point of view, however, this is no surprise at all - provided one is familiar with the theory of self-adjoint operators in Krein spaces.Jan Nesemann studies relatively bounded perturbations of self-adjoint operators in Krein spaces with real spectrum. The main results provide conditions which guarantee the spectrum of the perturbed operator to remain real. Similar results are established for relatively form-bounded perturbations and for pseudo-Friedrichs extensions. The author pays particular attention to the case when the unperturbed self-adjoint operator has infinitely many spectral gaps, either between eigenvalues or, more generally, between separated parts of the spectrum. Following the pioneering work of Carl M. Bender et al. (1998), there has been an increasing interest in theoretical physics in so-called PT-symmetric Schrödinger operators. In the physical literature, the existence of Schrödinger operators with PT-symmetric complex potentials having real spectrum was considered a surprise and many examples of such potentials were studied in the sequel. From a mathematical point of view, however, this is no surprise at all ? provided one is familiar with the theory of self-adjoint operators in Krein spaces.Jan Nesemann studies relatively bounded perturbations of self-adjoint operators in Krein spaces with real spectrum. The main results provide conditions which guarantee the spectrum of the perturbed operator to remain real. Similar results are established for relatively form-bounded perturbations and for pseudo-Friedrichs extensions. The author pays particular attention to the case when the unperturbed self-adjoint operator has infinitely many spectral gaps, either between eigenvalues or, more generally, between separated parts of the spectrum. Bücher / Fachbücher / Mathematik / Analysis 978-3-8348-1762-4, Vieweg+Teubner

Neues Buch Buch.de
Nr. 29163933 Versandkosten:Bücher und alle Bestellungen die ein Buch enthalten sind versandkostenfrei, sonstige Bestellungen innerhalb Deutschland EUR 3,-, ab EUR 20,- kostenlos, Bürobedarf EUR 4,50, kostenlos ab EUR 45,-, Versandfertig in 5 - 7 Tagen, DE. (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
PT-Symmetric Schrödinger Operators with Unbounded Potentials - Jan Nesemann
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)

Jan Nesemann:

PT-Symmetric Schrödinger Operators with Unbounded Potentials - neues Buch

ISBN: 9783834817624

ID: 202127942

Following the pioneering work of Carl M. Bender et al. (1998), there has been an increasing interest in theoretical physics in so-called PT-symmetric Schrödinger operators. In the physical literature, the existence of Schrödinger operators with PT-symmetric complex potentials having real spectrum was considered a surprise and many examples of such potentials were studied in the sequel. From a mathematical point of view, however, this is no surprise at all - provided one is familiar with the theory of self-adjoint operators in Krein spaces.Jan Nesemann studies relatively bounded perturbations of self-adjoint operators in Krein spaces with real spectrum. The main results provide conditions which guarantee the spectrum of the perturbed operator to remain real. Similar results are established for relatively form-bounded perturbations and for pseudo-Friedrichs extensions. The author pays particular attention to the case when the unperturbed self-adjoint operator has infinitely many spectral gaps, either between eigenvalues or, more generally, between separated parts of the spectrum. Following the pioneering work of Carl M. Bender et al. (1998), there has been an increasing interest in theoretical physics in so-called PT-symmetric Schrödinger operators. In the physical literature, the existence of Schrödinger operators with PT-symmetric complex potentials having real spectrum was considered a surprise and many examples of such potentials were studied in the sequel. From a mathematical point of view, however, this is no surprise at all ? provided one is familiar with the theory of self-adjoint operators in Krein spaces.Jan Nesemann studies relatively bounded perturbations of self-adjoint operators in Krein spaces with real spectrum. The main results provide conditions which guarantee the spectrum of the perturbed operator to remain real. Similar results are established for relatively form-bounded perturbations and for pseudo-Friedrichs extensions. The author pays particular attention to the case when the unperturbed self-adjoint operator has infinitely many spectral gaps, either between eigenvalues or, more generally, between separated parts of the spectrum. PT-Symmetric Schrödinger Operators with Unbounded Potentials Buch (fremdspr.) Bücher>Fachbücher>Mathematik>Analysis, Vieweg+Teubner

Neues Buch Thalia.de
No. 29163933 Versandkosten:, Versandfertig in 2 - 3 Tagen, DE (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
PT-Symmetric Schrödinger Operators with Unbounded Potentials - Jan Nesemann
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Jan Nesemann:
PT-Symmetric Schrödinger Operators with Unbounded Potentials - Taschenbuch

2011

ISBN: 3834817627

[SR: 11809021], Paperback, [EAN: 9783834817624], Vieweg+Teubner Verlag, Vieweg+Teubner Verlag, Book, [PU: Vieweg+Teubner Verlag], 2011-07-14, Vieweg+Teubner Verlag, Following the pioneering work of Carl. M. Bender et al, (1998), there has been an increasing interest in theoretical physics in so-called PT-symmetric Schrödinger operators. In the physical literature, the existence of Schrödinger operators with PT-symmetric complex potentials having real spectrum was considered a surprise and many examples of such potentials were studied in the sequel. From a mathematical point of view, however, this is no surprise at all - providing one is familiar with the theory of self-adjoint operators in Krein spaces. Jan Nesemann studies relatively bounded perturbations of self-adjoint operators in Krein spaces with real spectrum. The main results provide conditions which guarantee the spectrum of the perturbed operator to remain real. Similar results are established for relatively form-bounded perturbations and for pseudo-Friedrichs extensions. The author pays particular attention to the case when the unperturbed self-adjoint operator has infinitely many spectral gaps, either between eigenvalues, or more generally, between separated parts of the spectrum., 21, Reference, 11444, Almanacs & Yearbooks, 11448, Atlases & Maps, 2572, Careers, 11626, Catalogs & Directories, 11472, Consumer Guides, 11475, Dictionaries & Thesauruses, 11713, Encyclopedias & Subject Guides, 11823, English as a Second Language, 11761, Etiquette, 11773, Foreign Language Study & Reference, 11880, Genealogy, 11902, Quotations, 8975382011, Survival & Emergency Preparedness, 5267710011, Test Preparation, 11970, Words, Language & Grammar, 5267707011, Writing, Research & Publishing Guides, 1000, Subjects, 283155, Books, 13920, Functional Analysis, 226698, Pure Mathematics, 13884, Mathematics, 75, Science & Math, 1000, Subjects, 283155, Books, 468218, Mathematics, 491542, Algebra & Trigonometry, 491544, Calculus, 491546, Geometry, 491548, Statistics, 468216, Science & Mathematics, 465600, New, Used & Rental Textbooks, 2349030011, Specialty Boutique, 283155, Books

Neues Buch Amazon.com
the_book_community
Neuware Versandkosten:zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
PT-Symmetric Schrödinger Operators with Unbounded Potentials - Jan Nesemann
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Jan Nesemann:
PT-Symmetric Schrödinger Operators with Unbounded Potentials - gebrauchtes Buch

2011, ISBN: 9783834817624

ID: 9783834817624

Jan Nesemann, Paperback - 2011, Edition: 1, English-language edition, Pub by Vieweg+Teubner Verlag Books, Mathematics~~Functional Analysis, PT-Symmetric-Schr-dinger-Operators-with-Unbounded-Potentials~~Jan-Nesemann, 999999999, PT-Symmetric Schrödinger Operators with Unbounded Potentials, Jan Nesemann, 3834817627, Vieweg+Teubner Verlag, , , , , Vieweg+Teubner Verlag

gebrauchtes bzw. antiquarisches Buch Barnesandnoble.com
MPN: , SKU 9783834817624 Versandkosten:zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
PT-symmetric Schrodinger Operators with Unbounded Potentials - Jan Nesemann
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Jan Nesemann:
PT-symmetric Schrodinger Operators with Unbounded Potentials - Taschenbuch

ISBN: 9783834817624

Paperback, [PU: Springer Fachmedien Wiesbaden], Functional Analysis & Transforms

Neues Buch Bookdepository.com
Versandkosten:Versandkostenfrei (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.